A global database of publicly available dengue case data. The OpenDengue Project provides a harmonized, open-access repository of dengue surveillance data from national ministries of health across Latin America and other regions. This function enables programmatic access to weekly case counts by downloading, caching, unzipping, reading, and filtering national, spatial, or temporal extracts by region and country for a specified date range, returning a ready-to-use tibble.
Usage
l4h_dengue_cases(
from,
to,
data_type = c("temporal", "spatial", "national"),
region = NULL,
country = "Peru",
cache = TRUE,
quiet = FALSE
)
Source
Data from the OpenDengue Project.
Arguments
- from
Start date (
YYYY-MM-DD
).- to
End date (
YYYY-MM-DD
).- data_type
One of
"national"
,"spatial"
, or"temporal"
.- region
Region code or full name (case-insensitive). Codes:
"paho"
,"searo"
,"wpro"
,"afro"
,"emro"
,"euro"
. Full names: "Pan-American Region", "South-East Asia Region", "Western Pacific Region", "African Region", "Eastern Mediterranean Region", "European Region".- country
Country name (case-insensitive, e.g.,
"peru"
), matched againstadm_0_name
.- cache
Logical. If
TRUE
, caches the downloaded ZIP locally.- quiet
Logical. If
TRUE
, prints progress status via cli.
Credits
Pioneering geospatial health analytics and open‐science tools. Developed by the Innovalab Team, for more information send a email to imt.innovlab@oficinas-upch.pe
Follow us on :
References
Morales, I. et al. (2024). OpenDengue: Harmonized dengue surveillance data for Latin America.
See also
Other similar or related functions: l4h_layers_available_malaria()
Examples
if (interactive()) {
# National extract for Peru in 2019
df_nat <- l4h_dengue_cases(
from = "2019-01-01",
to = "2019-12-31",
data_type = "national",
region = "paho",
country = "peru",
cache = TRUE,
quiet = TRUE
)
head(df_nat)
# Spatial extract for Brazil
df_spat <- l4h_dengue_cases(
from = "2021-01-01",
to = "2021-12-31",
data_type = "spatial",
region = "Pan-American Region",
country = "brazil",
cache = TRUE,
quiet = TRUE
)
head(df_spat)
# Temporal extract for Argentina
df_temp <- l4h_dengue_cases(
from = "2020-01-01",
to = "2020-12-31",
data_type = "temporal",
region = "PAHO",
country = "Argentina",
cache = TRUE,
quiet = TRUE
)
head(df_temp)
}