
List malaria layers by species & metric from Malaria Atlas Project
Source:R/l4h_layers_available_malaria.R
l4h_layers_available_malaria.Rd
Provides a tidy listing of all malaria data layers in the Malaria Atlas Project GeoServer, including separate columns for species (Plasmodium falciparum vs. Plasmodium vivax), year, month, and metric (e.g. incidence_rate, parasite_rate, mortality_count, etc.). These layers cover modeled estimates of malaria prevalence, incidence, mortality and more, at global scale, broken down by species and time.
Arguments
- year
Integer or integer vector. Optional filter on dataset year (e.g.
2024
).- species
Character or character vector. Optional filter on species:
"plasmodium falciparum"
"plasmodium vivax"
- measure
Character or character vector. Optional filter on metric type: e.g.
"incidence_rate"
,"parasite_rate"
,"mortality_count"
,"reproductive_number"
.
Value
A tibble with columns:
workspace
— always"malaria"
year
— dataset yearmonth
— dataset month (NA if annual)species
— full species name (lowercase)measure
— metric type (lowercase)dataset_id
— original coverage ID for subsequent WMS/WCS requests
Details
The Malaria Atlas Project https://malariaatlas.org/ provides globally modeled raster surfaces of key malaria indicators. This function retrieves all available coverage IDs from the GeoServer, parses out the species, time, and metric, and returns them in a user-friendly table for easy filtering and selection.
Credits
Pioneering geospatial health analytics and open‐science tools. Developed by the Innovalab Team, for more information send a email to imt.innovlab@oficinas-upch.pe
Follow us on :
Examples
# \donttest{
# list all available malaria layers
all_layers <- l4h_layers_available_malaria()
head(all_layers)
#> # A tibble: 6 × 6
#> workspace year month species measure dataset_id
#> <chr> <int> <int> <chr> <chr> <chr>
#> 1 malaria 2022 6 plasmodium falciparum mortality_count Malaria__202206_G…
#> 2 malaria 2024 6 plasmodium falciparum mortality_count Malaria__202406_G…
#> 3 malaria 2022 6 plasmodium falciparum mortality_rate Malaria__202206_G…
#> 4 malaria 2024 6 plasmodium falciparum mortality_rate Malaria__202406_G…
#> 5 malaria 2022 6 plasmodium falciparum incidence_rate Malaria__202206_G…
#> 6 malaria 2024 6 plasmodium falciparum incidence_rate Malaria__202406_G…
# filter for Plasmodium falciparum parasite rate in 2024
pf_pr_2024 <- l4h_layers_available_malaria(
year = 2024,
species = "plasmodium falciparum",
measure = "parasite_rate"
)
print(pf_pr_2024)
#> # A tibble: 1 × 6
#> workspace year month species measure dataset_id
#> <chr> <int> <int> <chr> <chr> <chr>
#> 1 malaria 2024 6 plasmodium falciparum parasite_rate Malaria__202406_Glo…
# }