
Extracts built‑up surface area from GHSL Built‑Up Surface dataset
Source:R/l4h_human_built.R
l4h_human_built.Rd
Retrieves total built‑up surface area (in m2 per 100m grid cell) from the GHSL Built-Up Surface dataset (GHS‑BUILT‑S R2023A), over a user-defined region and date range. The dataset is provided in 5‑year epochs (1975–2030) at ~100m resolution.
Usage
l4h_human_built(
from,
to,
region,
scale = 100,
sf = TRUE,
quiet = FALSE,
force = FALSE,
...
)
Arguments
- from
Character. Start date in "YYYY-MM-DD" format (only the year is used).
- to
Character. End date in "YYYY-MM-DD" format (only the year is used).
- region
Spatial object (
sf
,sfc
, orSpatVector
) defining the region.- scale
Numeric. Resolution in meters (default = 100).
- sf
Logical. If
TRUE
, returns ansf
; ifFALSE
, returns atibble
. Default =TRUE
.- quiet
Logical. If
TRUE
, suppresses progress output. Default =FALSE
.- force
Logical. If
TRUE
, bypass representativity checks. Default =FALSE
.- ...
Arguments passed to
rgee::ee_extract()
.
Credits
Pioneering geospatial health analytics and open‐science tools. Developed by the Innovalab Team, for more information send a email to imt.innovlab@oficinas-upch.pe
Follow us on :
References
Pesaresi, M. & Politis, P. (2023). GHS‑BUILT‑S R2023A: Red de superficie construida de GHS, derivada de la composición de Sentinel-2 y Landsat, multitemporal (1975–2030). European Commission, Joint Research Centre (JRC). doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA . PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea
Pesaresi, M., Schiavina, M., Politis, P., Freire, S., Krasnodebska, K., Uhl, J.H., Carioli, A., et al. (2024). Avances en la capa de asentamientos humanos globales a través de la evaluación conjunta de datos de observación de la Tierra y encuestas demográficas. International Journal of Digital Earth, 17(1). doi:10.1080/17538947.2024.2390454
Dataset on Google Earth Engine: https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_S
Examples
if (FALSE) { # \dontrun{
library(land4health)
library(sf)
ee_Initialize()
# Define a bounding box region in Ucayali, Peru
region <- st_as_sf(st_sfc(
st_polygon(list(matrix(c(
-74.1, -4.4,
-74.1, -3.7,
-73.2, -3.7,
-73.2, -4.4,
-74.1, -4.4
), ncol = 2, byrow = TRUE))),
crs = 4326
))
# Extract built-up surface area from 2000 to 2020
built_area <- l4h_human_built(
from = "2000-01-01",
to = "2020-12-31",
region = region,
scale = 100,
stat = "sum"
)
head(built_area)
# Example using as tibble
built_tbl <- l4h_human_built(
from = "1990-01-01",
to = "2015-12-31",
region = region,
sf = FALSE,
stat = "mean"
)
dplyr::glimpse(built_tbl)
} # }